Free Response Questions

Q: 1 *f* is a strictly increasing function while *g* is a strictly decreasing function. The range of [2] f and *g* are the same as the codomain of *f* and *g* respectively.

If (fog) is defined, will (fog) be an invertible function? Justify your answer.

Q: 2 Prathibha Karanji is an innovative program by the Government of Karnataka, India, [5] where cultural and literacy competitions are held between schools at cluster, block, district and state levels.

One of those competitions - Yogasana, is conducted under two categories - Middle school and High school. From a certain district, three students from middle school and two students from high school were selected for the state level.

Let M = { m_1, m_2, m_3 }, H = { h_1, h_2 }, represent the set of students from middle school and high school respectively who got selected for the state level from that district.

i) A relation R:M -> M is defined by $R = \{(x, y) : x \text{ and } y \text{ are students from the same category}\}$. Show that R is an equivalence relation.

ii) A function $f : M \to H$ is defined by $f = \{(m_1, h_1), (m_2, h_2), (m_3, h_2)\}$. Show that f is onto but not one-one.

Q: 3 Two functions $f : \mathbb{R} \to \mathbb{R}$ and $g : \mathbb{R} \to R$, where \mathbb{R} is the set of real numbers, are defined [5] as follows:

 $f(x) = (x + \sin x)$ $g(x) = (-x - \cos x)$

i) Find (fog)(x).
ii) Find (gof)(x).
iii) Using i) and ii), show that (gof)(0) - sin(1) = (fog)(0).

Show your steps.

$$\frac{\mathbf{Q:4}}{\mathbf{If}} \text{ If } f(x) = 3 + \left(\frac{e^{3x} + e^{-3x}}{e^{3x} - e^{-3x}}\right) \text{ and } f^{-1}(x) = \frac{1}{A}g(x), \text{ find } :$$

i) the value of A. ii) g(x).

Show your steps.

Get More Learning Materials Here : 📕

[5]

Q.No	What to look for	Marks
1	Writes that, <i>f</i> and <i>g</i> are one-to-one functions since they are strictly increasing and strictly decreasing respectively.	0.5
	Writes that, (fog) is also one-to-one since f and g are one-to-one.	0.5
	Writes that, (fog) is onto since it is given that f and g are onto functions.	0.5
	Concludes that, (fog) is a bijective function and therefore invertible.	0.5
2	i) Shows that R is reflective. The working may look as follows:	0.5
	x and x are from the same category => (x,x) \in R for every $x \in$ M	
	Shows that R is symmetric. The working may look as follows:	1
	$(x,y) \in \mathbb{R}$	
	=> x and y are from the same category.	
	=> y and x are from the same category.	
	$=>(y,x)\in R$	
	Shows that R is transitive. The working may look as follows:	1
	(x, y) ∈ R and (y, z) ∈ R => x and y are from the same category and, y and z are from the same category.	
	= x, y and z are from the same category.	
	$=>(x,z)\in R$	
	Uses steps 1, 2 and 3 to conclude that R is an equivalence relation.	0.5
	ii) Writes that the Range of $f = \{h_1, h_2\}$ = codomain of f . Hence concludes that f is onto.	1

Get More Learning Materials Here : 📕

Q.No	What to look for	Marks
	Writes that $f(m_2) = f(m_3) = h_2$, but $m_2 \neq m_3$. Hence concludes that f is not one-one.	1
3	i) Finds (<i>fog</i>)(<i>x</i>) as follows:	1.5
	$f[g(x)] = f(-x - \cos x) = -x - \cos x + \sin(-x - \cos x)$	
	ii) Finds (<i>gof</i>)(<i>x</i>) as follows:	1.5
	$g[f(x)] = g(x + \sin x) = -(x + \sin x) - \cos(x + \sin x)$	
	iii) Substitutes x = 0 in the expression obtained in step 1 to find (fog)(0) as[-1 - sin(1)].	0.5
	Substitutes $x = 0$ in the expression obtained in step 2 to find (<i>gof</i>)(0) as (-1).	0.5
	Finds (<i>gof</i>)(0) - sin(1) as [-1 - sin(1)].	1
	Concludes that $(gof)(0) - sin(1) = (fog)(0)$.	
4	Equates <i>f</i> (x) to <i>y</i> and writes:	0.5
	$f(x) = y = 3 + \left(\frac{e^{6x}+1}{e^{6x}-1}\right)$	
	Simplifies the above equation to get:	1
	$\gamma = \frac{4e^{6x} - 2}{e^{6x} - 1}$	
	Simplifies the above equation to get:	1
	$e^{6x} = \frac{y-2}{y-4}$	

Get More Learning Materials Here : 📕

Q.No	What to look for	Marks
	Simplifies the above equation to get:	1.5
	$x = f^{-1}(y) = \frac{1}{6} \log_e \frac{y-2}{y-4}$	
	Rewrites the above equation in terms of <i>x</i> as:	0.5
	$f^{-1}(x) = \frac{1}{6} \log_e \frac{x-2}{x-4}$	
	Compares the above equation with the given $f^{-1}(x)$ and writes:	0.5
	$A = 6$ and $g(x) = \log_e \left(\frac{x-2}{x-4}\right)$	

